

Effective from Session: 2020 -21										
Course Code	BE 620	Title of the Course	Computer Aided Drug Design	L	Т	Р	С			
Year	2	Semester	3	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives			g and understanding the entire picture of the latest developm urse focuses on recent insilico structure and ligand based ap							

	Course Outcomes							
CO1	Explain the stages of modern era drug designing and apply it while correlating with any drug's discovery and approval pattern.							
CO2	Analyze the important drug targets and understand its significance in designing new drugs against new targets.							
CO3	Understand the concept and applications of structure based drug design and apply it in corresponding case studies.							
CO4	Understand the concept and applications of ligand based drug design and apply it in corresponding case studies.							
CO5	Analyze the pharmacokinetic and toxicity related issues of the drug molecules.							

Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
Stages of Drug Designing	Drug Discovery Pipeline: Strategies to identify possible drug targets, Validation and Druggability of targets, Discovery of Lead compounds, Optimization of Lead compounds to Candidate drugs, Clinical Trials and its applications.	8	CO1						
Drug Targets	Potential Drug Targets: Family of G-Protein Coupled receptors (GPCRs), Ion Channels: Molecular structure and significance; Aquaporins as Drug Targets, DNA as anti-cancer targets.	8	CO2						
Direct Drug Design	Structure based Drug Design: Molecular Docking- principles and concepts, Representation of molecules, Searching and Scoring of potential solutions, Special aspects of docking: protein flexibility and water molecules. Common Docking programs: AUTODOCK, GOLD.	8	CO3						
Indirect Drug Design	Ligand based Drug Design: Quantitative Structure Activity Relationship (QSAR) – principles and concepts, Statistical Methods used in QSAR analyses, Pharmacophore Modeling: Criteria for satisfactory pharmacophore model, Basics of Hip Hop and Hypogen Model, Applications of pharamacophore model.	8	CO4						
Drug Pharmacokinetics	Pharmacokinetic analyses of Drugs: Quantitative Structure Property Relationship (QSPR) studies –important parameters and significance, ADME- TOX studies, Concept of Drug-likeliness and its applicability.	8	CO5						
ce Books:									
hoti, Andrew R. Leach;	Structure- based Drug Discovery, Springer, 2007, ISBN 1402044070								
Leach; Molecular Mode	elling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780582382107								
bard; Structure-based E	Drug Discovery: An Overview, Royal Society of Chemistry, 2006								
	Guillermo Morales, Jurgen Bajorath; Chemoinformatics: Theory, Practice, & Products, Spring	ger Science	& Business						
e-Learning Source:									
Zhang W, Pei J, Lai L. Computational Multitarget Drug Design, J ChemInf Model, 2017. doi: 10.1021/acs.jcim.6b00491.									
l Center for Biotechnolo	gy Information, www.ncbi.nlm.nih.gov								
recording: a sequel for	beginners: ligand-based drug design — the basics https://www.youtube.com/watch?v=ef5EaooE	BYUU							
	Stages of Drug Designing Drug Targets Direct Drug Design Indirect Drug Design Drug Pharmacokinetics Ce Books: Ihoti, Andrew R. Leach; Leach; Molecular Mode obard; Structure-based D a. Bunin, Brian Siesel, C 2006. rning Source: V, Pei J, Lai L. Computa I Center for Biotechnolo	Stages of Drug Drug Discovery Pipeline: Strategies to identify possible drug targets, Validation and Druggability of targets, Discovery of Lead compounds, Optimization of Lead compounds to Candidate drugs, Clinical Trials and its applications. Drug Targets Potential Drug Targets: Family of G-Protein Coupled receptors (GPCRs), Ion Channels: Molecular structure and significance; Aquaporins as Drug Targets, DNA as anti-cancer targets. Direct Drug Design Structure based Drug Design: Molecular Docking- principles and concepts, Representation of molecules, Searching and Scoring of potential solutions, Special aspects of docking: protein flexibility and water molecules. Common Docking programs: AUTODOCK, GOLD. Ligand based Drug Design: Quantitative Structure Activity Relationship (QSAR) – principles and concepts, Statistical Methods used in QSAR analyses, Pharmacophore Modeling: Criteria for satisfactory pharmacophore model, Basics of Hip Hop and Hypogen Model, Applications of pharamacophore model. Drug Pharmacokinetics Pharmacokinetics Structure- based Drug Discovery, Springer, 2007, ISBN 1402044070 Leach; Molecular Modelling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780582382107 obard; Structure-based Drug Discovery: An Overview, Royal Society of Chemistry, 2006 A. Bunin, Brian Siesel, Guillermo Morales, Jurgen Bajorath; Chemoinformatics: Theory, Practice, & Products, Sprin, 2006. Prug V, Pei J, Lai L. Computational Multitarget Drug Design, J ChemInf Model, 2017. doi: 10.1021/acs.jcim.6b00491. I Center for Biotechnology Information	Title of the UnitContent of UnitHrs.Stages of Drug DesigningDrug Discovery Pipeline: Strategies to identify possible drug targets, Validation and Druggability of targets, Discovery of Lead compounds, Optimization of Lead compounds to Candidate drugs, Clinical Trials and its applications.8Drug TargetsPotential Drug Targets: Family of G-Protein Coupled receptors (GPCRs), Ion Channels: Molecular structure and significance; Aquaporins as Drug Targets, DNA as anti-cancer targets.8Direct Drug DesignStructure based Drug Design: Molecular Docking- principles and concepts, Representation of molecules, Searching and Scoring of potential solutions, Special aspects of docking: protein flexibility and water molecules. Common Docking programs: AUTODOCK, GOLD.8Indirect Drug DesignLigand based Drug Design: Quantitative Structure Activity Relationship (QSAR) – principles and concepts, Statistical Methods used in QSAR analyses, Pharmacophore Modeling: Criteria for satisfactory pharmacophore model. Budies – important parameters and significance, ADME- TOX studies, Concept of Drug- likeliness and its applicability.8Drug PharmacokineticsPharmacokinetic analyses of Drugs: Quantitative Structure Property Relationship (QSPR) studies – important parameters and significance, ADME- TOX studies, Concept of Drug- likeliness and its applicability.8ce Books:E101012tructure-based Drug Discovery: An Overview, Royal Society of Chemistry, 20068t. Bunin, Brian Siesel, Guillermo Morales, Jurgen Bajorath; Chemoinformatics: Theory, Practice, & Products, Springer Science 2006.8tructure-based Drug Discovery: An Overview, Royal Society of Chemistry, 2006 </td						

Jenny Viklund& Fredrik Rahm (Sprint Bioscience): Marvin Live for structure-based drug design: Chem axon: https://www.youtube.com/watch?v=5gzxQC_mMX0

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO5	PSO6	PSO7
CO																		
CO1	1	2	2	3	3	2	1	2	1	2	1	2	3	2	2			
CO2	1	2	2	2	2	2	1	1	1	2	1	1	3	2	1			
CO3	3	3	3	3	2	2	1	1	1	1	1	2	3	1	2			
CO4	3	3	3	3	2	2	1	1	1	1	1	2	3	1	2			
CO5	3	2	2	1	3	2	2	1	1	1	1	2	3	2	2			

Effective from Session: 2020-21											
Course Code	BE621	Title of the Course	le of the Course Applied Genomics				С				
Year	Π	Semester	III	2	1	0	3				
Pre-Requisite	BE521	Co-requisite	None								
Course Objectives	applied in gen In particular	netics and genomics and the student is able to: u	built knowledge and skills in student of the main experim l approaches for genetic and genomic data analysis, and nex inderstand the structure of genetic variability, learn DNA so orrectly interpret results and plan genetic studies in a proper	t gene sequen	eration s	sequenc	ing.				

	Course Outcomes
CO1	Understand the term genome and the methods of genetic and physical mapping.
CO2	Learn about different methods of DNA sequencing, genome annotation, and gene prediction.
CO3	Understand the concepts of structural, functional, and computational genomics; and gain knowledge about the applications of comparative
	genomics.
CO4	Understand the concepts of microarray data analysis for gene expression and will gain knowledge about the bioinformatics tools used in the
	microarray data analysis.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Genome	Definition of genome, GenomeMap: TypesofGenomemaps and theiruses, High and low- resolution map, Polymorphic markers: LINEs, SINEs, RFLP, SNP; Typesofmaps: Cytogeneticmap, Linkagemap, Transcript map, Physicalmap.	8	CO1						
2	Gene Prediction	DNA sequencing: Sanger's method and Maxam Gilbert method; Large scale genome sequencing strategies: Shot gun sequencing, Clone contig approach. Genome Annotation: Structural annotation - Various approaches for gene prediction in the case of prokaryotes and eukaryotes, ORF Finder, GenScan, Prediction of promoter sequences and splice sites.	8	CO2						
3	Structural and Functional Genomics	Basic principles of structural and functional genomics: role and their applications. Comparative Genomics: Purpose and Methods of comparison, Comparison at nucleotide level, ontological comparison, phylogenetic comparison; Applications of Comparative Genomics.	8	CO3						
4	Gene Expression analysis	Gene Expression and Microarray data Analysis: Exploring the microarray data set, Spatial images of microarray data, Statistics of the microarrays, Scatter plots of microarray data; Clustering gene expression profiles, Principal component analysis (PCA), Self-Organizing Maps (SOM), Bioinformatics tools for Microarray data analyses.	8	CO4						
1. De	nce Books: eveloping Bioinformatic ear: 2001.	s Computer Skills: An Introduction to Software Tools for Biological Applications; Publisher:	O'Reilly Me	dia; Edition						
2. Int	roduction to Genetic An	alysis; Publisher: Freeman & Company, W. H.; Edition Year: 2017.								
3. Ge	ne Cloning and DNA A	nalysis: An Introduction; Publisher: John Wiley & Sons Ltd; Edition Year: 2010.								
4. Bio	oinformatics: A Practica	l Guide to the Analysis of Genes and Proteins.								
5. Pu	blisher: John Wiley & S	ons Ltd; Edition Year: 2005.								
6. Int	roduction to Bioinforma	tics: A Theoretical and Practical Approach; Publisher: John Wiley & Sons Ltd; Edition Year: 20	05.							
	rning Source:									
1. Bio	1. Biology Animation Library									
2. <u>htt</u>	ps://www.dnalc.org/reso	urces/animations/cycseq.html								

						Cour	se Arti	culatio	n Matri	ix: (Map	ping of	COs with	n POs and	d PSOs)				
PO-																		
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	1	2	1	1	1	1	1	1	1	1		3	1	1	1			
CO2	2	3	1	1	2	2	1	1	1	1		3	2	3	1			
CO3	1	2	1	1	2	3	1	1	1	1		3	1	3	1			
CO4	2	3	3	2	3	2	1	1	1	1		3	2	3	1			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2021-2022											
Course Code	BE622	Title of the Course	Protein Informatics	L	Т	Р	С				
Year	Π	Semester	III	2	1	0	3				
Pre-Requisite	BE620	Co-requisite	None								
Course Objectives	to the bioinfo a substantial	rmatics tools and databa understanding of popu	to the fundamentals of tools and techniques of computational asses used for the prediction of protein function and structure lar computational methods, as well as molecular tools ar ods applied to real data.	e. It is o	designe	d to im	part				

	Course Outcomes
CO1	Understand the details of protein's hierarchical evolutionary classification and their associated databases.
CO2	Explain the concepts and applications of spectroscopy and their impact on display and analysis of proteomics data.
CO3	Understand the basics of chromatography and electrophoretic techniques and their implications to the analysis of biological macromolecules.
CO4	Discuss the practical aspects of protein-protein interactions using online tools of Expert Protein Analysis System (ExPASy).

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Introduction to protein structure and databases	Overview of Amino acids, Secondary, Tertiary, and Quaternary structure of proteins, Motifs and Domain, Significance of Leucine zipper and Zing finger, Principles of classification of proteins based on structural features: CATH and SCOP, Structural databases: PDB and MMDB.	8	C01					
2	Principles and applications of spectroscopy	Introduction to principles and applications of UV-Visible Spectroscopy, Fluorescent Spectroscopy, CD Spectroscopy and basic concepts of NMR and Mass Spectrometry and their significance in structural biology.	8	CO2					
3	Introduction to chromatography and electrophoresis	Basic principle of Chromatography and Electrophoresis techniques in isolating, separating and purifying protein molecules, Brief overview of different types of Chromatography and Electrophoresis & their applications.	8	CO3					
4	Applied proteomics	Study of transcriptome and proteome; Concept of protein-protein interactions and their databases such as DIP. Tools for analysis of protein-protein interactions: PPI server. Protein arrays: basic principles; bioinformatics-based tools for analysis of proteomics data, ExPASy Proteomics server.	8	CO4					
Referen	ce Books:								
Protein	Bioinformatics: From S	Sequence to Function; Academic Press, 2011; ISBN 0123884241, 9780123884244							
	es and Techniques of F 521731674; 978-05217	Practical Biochemistry; Cambridge University Press, 16-Mar-2000Reprint 4 March 2010; V31676							
Essentia	Essential Bioinformatics; Cambridge University Press, 2006; ISBN 113945062X, 9781139450621								
Lehning	er Principles of Bioche	emistry; W. H. Freeman; 13 February 2013; ISBN 1464109621, 978-1464109621							
e-Lear	rning Source:								

e-Learning Source:

Analytical Biochemistry; Dr. Ashwani K. Sharma, IIT Roorkee; http://nptel.ac.in/courses/102107028/

Bioanalytical Techniques and Bioinformatics; Dr. Vishal Trivedi and Dr. Nitin Chaudhary, IIT Guwahati; http://nptel.ac.in/courses/102103044/

Introduction to Proteomics; Dr. Sanjeeva Srivastava, IIT Bombay; https://onlinecourses.nptel.ac.in/noc16_bt07

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																	
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO6
C01	2	2	2	2	3	2	2	1	1	3	2	3	2	2	2				
CO2	2	2	1	3	3	1	1	1	1	3	2	3	2	2	2				
CO3	1	2	2	2	3	1	1	1	1	2	1	3	2	2	2				
CO4	1	2	2	2	2	1	1	1	1	2	1	3	2	2	2				

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	Effective from Session: 2020-21										
Course Code	BE623	Title of the Course	System Biology	L	Т	Р	С				
Year	Π	Semester	III	2	1	0	3				
Pre-Requisite	BE525	525 Co-requisite None									
Course Objectives	processes in l		ng and developing thoughtful process in understanding and elling ranges from simple molecules to cell based systems as								

	Course Outcomes
CO1	Understand the basic concepts and principles of computational modeling and its advantages.
CO2	Understand the concepts and utility of system biology tools such as modeling tools and databases such as Gene Ontology and Reactome.
CO3	Understand the concepts of simulation related to pathways and gene networks.
CO4	Understand the basic concepts of designing of gene circuits and database related to system biology.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Basics to Modeling	Basic Terminology & Principles – The Biology – Modeling – Properties of Models - Advantages of Computational Modeling - Typical Aspects of Biological Systems and Corresponding Models - Network Versus Elements – Modularity- Robustness and Sensitivity - Data integration – Living Science - The human genome landscape.	8	CO1
2	System Biology Tools and Databases	Computer-based Information Retrieval and Examination – Systems Biology Databases and Tools on the Internet- Gene Ontology – Reactome - TRANSFAC and EPD - Genome Matrix - Modeling Tools - Modeling and Visualization- Mathematica and Matlab – Gepasi - E-Cell – PyBioS - Systems Biology Workbench – Cell Designer.	8	CO2
3	Simulations of Pathways	Simulation and pathways: - Whole-cell: Principle and levels of simulation – Virtual Erythrocytes, Pathological analysis. Flux Balance Analysis – metabolomics- and enzymes, Gene Networks: basic concepts, computational model such transcription networks basic concepts.	8	CO3
4	Gene Circuits	Design of Circuits and Databases: Introduction-, databases KEGG and EMP; MetaCyc and AraCyc .Expression databases and various databases related to systems biology. Optional design of gene circuits I: cost and benefit: gene circuits II selection of regulation.	8	CO4
1. Uri 1-5 2. L.	58488-642-0. Alberghina, H.V. Weste	to Systems Biology-Design principles of Biological circuits, Chapman and Hall/CRC Taylor fra rhoff. Systems Biology: Definitions and perspectives, Springer, 2005, ISBN 978 3-540-74269-2. tional systems biology, Academic press, 2005, ISBN 0-12-088786-X.		2007, ISBN
4. E. ISF	Klipp, R. Herwig, A. K 3N 10-3-527-31078-9.	Kowlad, C. Wierling and H. Lehrach. Systems Biology in practice: Concepts, Implementation	and applica	tions, 2006,
	rning Source: titute for Systems Biolo	gy Seattle, WA. https://www.systemsbiology.org.		
2. Sys	stems Biology ISBE Pr	oject Website. project.isbe.eu/systems-biology.		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	1	1	2	2	1			2	1		3	2	3	3			
CO2	2	2	2	2	3	1			2	1		3	2	3	3			
CO3	2	2	2	2	3	1			2	1		3	2	3	3			
CO4	2	2	2	2	3	1			2	1		3	2	3	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020) -21						
Course Code	BE 624	Title of the Course	Chemoinformatics and Pharmacogenomics	L	Т	Р	С
Year	2	Semester	3	2	1	0	3
Pre-Requisite	None	Co-requisite	BE 620				
Course Objectives	genomics an chemoinform retrieval, ana	d approaches for gen atics methods, use of lysis and visualisation of	bduce the student of the main experimental designs and tool etic and genomic data analysis, and next generation chemoinformatics in modern drug research, design, orgo of chemical information. In particular the student is able to enomics and its application in drug design personalized med	sequer ganisat	ncing t ion, m	o diffe anagem	rent ent,

		Course Outcomes		
CO1	Explain the concept of	design and applications of chemical databases.		
CO2		chemoinformatics tools required in the process of drug discovery.		
CO3		of pharmacogenomics and its current developments.		
CO4	Understand the concept	of drug metabolism and correlate it with drug response pattern in human pharmacokinetic stud	ies.	
Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Computers in chemical research	Introductionto Chemoinformatics, Representation and manipulation of 2D and 3D molecularstructures, Chemical Databases - Design, Storage & Retrievalmethods, Overviewof PubChem and ChEBIdatabases.	8	CO1
2	HTS	Design and Analysis of High-throughput screening, Virtual Screening, Common tools for Virtual screening, Prediction of ADME-TOX properties of chemical compounds, Chemoinformatics tools for drug discovery.	8	CO2
3	Pharmacogenomics	History and overview, Concept of Genomic medicine: current status and application in various diseases. Role of SNP's in pharmacogenomics and case study, Construction and application of Genomic library.	8	CO3
4	Pharmacogenomics and drug design	Need for protein structure information, Mutation in drug targets, Insilico drug design of small molecules at genetic level, Drug metabolism: Role of cytochromes P450; The genetics of drug metabolism and pharmacogenomics. Challenges of Pharmacogenomics.	8	CO4
Referen	ce Books:			
Proteom	e Research: New Frontie	rs in Functional Genomics; Publisher: Springer; Edition Year: 2007		
Bioinfor	matics: A Practical Guid	e to the Analysis of Genes and Proteins; Publisher: John Wiley & Sons Ltd; Edition Year: 2005	•	
Bioinfor	matics for Systems Biolo	gy; Publisher: Springer; Edition Year: 2009.		
Chemoin	nformatics: A Textbook;	Publisher: John Wiley & Sons Ltd; Edition Year: 2005.		
	r ning Source: g Discovery Pipeline; Ch	loé-AgatheAzencott		
	• • •	lic/lectures/2014-S1133-drugdiscovery.notes.pdf		
	nformaticsJ. Polanski			
http://bo	oksite.elsevier.com/brocl	nures/compchemometrics/PDF/Chemoinformatics.pdf		
		rsonalized medicine; Hong-GuangXie		
https://w	ww.fda.gov/downloads/l	Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/m119614.pdf		
Jenny V		Sprint Bioscience): Marvin Live for structure-based drug design: Chem axon:		

						Cour	se Arti	culatio	n Matri	ix: (Man	ping of (COs with	n POs and	d PSOs)				
PO-											<u>r8</u>							
PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO5	PSO6	PSO7
СО																		
CO1	2	1	1	2	2	1	1	1	2	1	1	2	3	2	3			
CO2	2	2	2	2	3	1	1	1	2	1	1	3	2	3	3			
CO3	2	2	2	2	3	1	1	1	2	1	2	3	1	2	2			
CO4	2	2	2	2	3	2	1	2	1	2	2	3	1	2	2			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:											
Course Code	BE-625	Title of the Course	COMPUTER-AIDED DRUG DESIGN LAB	L	Т	Р	С				
Year	Π	Semester	III	0	0	4	4				
Pre-Requisite	None	Co-requisite	None								
Course Objectives	To obtain han	obtain hands-on-training on the different tools for computer-aided drug design									

	Course Outcomes
CO1	Retrieve the protein structures from PDB and perform energy minimization studies. The students will become efficient in visualizing and
	commenting on the active sites of the retrieved protein structures using Accelrys Discovery studio visualizer.
CO2	Identify the ligand binding sites in the protein molecules using Q-site Finder.
CO3	Retrieve the chemical compounds from the PubChem database and convert them into suitable pdb, asn and mol formats using Open Babel.
CO4	Perform the protein-ligand docking experiments using AutoDock Tools and the protein-protein docking experiments using the Z-DOCK server; and
	draw out important inferences.
CO5	Check the Drug-Likeliness properties of the given chemical compound using Lipinski's Rule of Five, and the in silico toxicity studies of the given
	chemical compound and draw out the important inferences.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO							
1	Experiment No. 1 and 2	To retrieve the protein structures form PDB and perform its energy minimization studies by applying suitable force fields. To visualize and comment on the active sites of the retrieved protein structures using the Accelrys Discovery studio visualizer.	8	1							
2	Experiment No. 3	To identify the ligand binding sites in the protein molecules using Q-site Finder.	8	2							
3	Experiment No. 4	To retrieve the chemical compounds from the PubChem database in the sdf format and convert it into suitable pdb, asn and mol format using Open Babel.	8	3							
4	Experiment No. 5 and 6	and 6 To perform the protein-protein docking experiments using Z-DOCKthe server and draw out important inferences.									
5	Experiment No. 7 and 8	To check the Drug-Likeliness properties of the given chemical compound using Lipinski's Rule of Five. To carry out the <i>in silico</i> toxicity studies of the given chemical compound and draw out the important inferences.	8	5							
Reference	ce Books:										
1.	Andrew Leach; Mole	cular Modelling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780	582382107.								
2.	Barry A Bunin, Brian S Media, 2006.	Siesel, Guillermo Morales, Jurgen Bajorath; Chemoinformatics: Theory, Practice, & Products, Spring	er Science &	Business							
3.	Wolff, M E Ed.; Burg	er's Medicinal Chemistry and Drug Discovery, John Wiley and Sons, 2010, New York.									
4.	H. Fenniri; Combinato	orial Chemistry—A practical Approach, Oxford University Press, 2000, UK.									
e-Lear	ning Source:										
1.	r · · · · ·	chemistry in drug discovery. European Bioinformatics <u>be.com/watch?v=9DESu1CWbRQ.</u>	Institute	EMBL							

2. Andrew McCammon: Molecular Dynamics and Drug discovery, Error! Hyperlink reference not valid. https://www.youtube.com/watch?v=uilZysMFcKk.

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	3	2	1		3	2		1				2	3	2	2
CO2	3	1	2	1	3		1	1				1	3	3	1
CO3	2	1	1	2	3				2			1	3	2	1
CO4	2	2	2	1	3				1			1	3	2	2
CO5	3	2	3	2	2			1	1			2	2	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2020-21													
Course Code	BE 699	Title of the Course	M Tech Dissertation	L	Т	Р	С						
Year	2	Semester	3	0	0	8	4						
Pre-Requisite	None	None Co-requisite None											
Pre-Requisite None Correquisite None Course Objectives To make students familiar with essential biomedical and life sciences R&D components that will facilitate the success completion of their dissertation work in the following semester.													

	Course Outcomes
CO1	Students will learn the searching of useful and authentic scientific literature.
CO2	Students will learn to analyze the structural biology data
CO3	Students will get the knowledge of proper information mining
CO4	Students will learn the metabolic pathway modeling
CO5	Students will learn the combinatorial chemistry concepts.

Unit No.	Title of the Experiment	Content of Unit	Contact Hrs.	Mapped CO
1	Literature survey	Retrieval of articles from PubMed and PubMed Central.	10	1
2	Structural biology	Retrieval of structural data of biological macromolecules using 3D repository databases.	10	2
3	Data mining	10	3	
4	Pathway modeling	Creation of publishable pathway models using online tools.	10	4
5	Combinatorial modleing	Combinatorial design of small molecules and their optimization.	8	5
Referen	ce Books:			
Bioinfor	rmatics for Systems Biology;	Publisher: Springer; Edition Year: 2009.		
Gupta, S	S.P., Statistical Methods; S. C	Chand & Sons, NewDelhi.		
Andrew	Leach; Molecular Modelling	g: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780582382107		
e-Learn	ing Source:			
	ey:https://www.mendeley.com	n		

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)																
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO																		
CO1	1	2	1	3	1	2	1	1	1	1	1	3	3	2	3			
CO2	1	2	3	1	1	2	1	1	1	1	1	3	3	1	3			
CO3	1	2	1	1	1	2	3	1	1	1	1	3	3	3	3			
CO4	1	2	1	3	1	2	1	1	1	1	1	3	3	3	3			
CO5	1	2	1	3	1	2	1	1	1	1	1	3	3	2	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2020	0-2021									
Course Code	BE699	Title of the Course	M. Tech Dissertation	L	Т	Р	С			
Year	II	Semester	IV	0	0	4	2			
Pre-Requisite	None	Co-requisite								
Course Objectives	To make students familiar with essential biomedical and life sciences R&D components that will facilitate the successful									
Course Objectives	completion o	f their dissertation work	in the following semester.							

	Course Outcomes
CO1	Skill to perform a review of available literature effectively to present the research gap.
CO2	Capability to build, retrieve, and optimize the 3D structures of biological macromolecules using in-silico tools.
CO3	Empower users with relevant drug information and advanced insights using clinical drug data API
CO4	Competency in applying various engineering and technological tools to create biological pathways.
CO5	Capability to design and optimize small molecules using different tools of combinatorial chemistry.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Retrieval of research articles	Retrieval of articles from PubMed and PubMed Central.	5	CO 1					
2	3D structure retrieval of biological macromolecules	Retrieval of structural data of biological macromolecules using 3D repository databases.	5	CO 2					
3									
4	Construction of biological pathways	Creation of publishable pathway models using online tools.	5	CO 4					
5	Combinatorial Design	Combinatorial design of small molecules and their optimization.	5	CO 5					
Referen	ce Books:								
1. Funda	amental Concepts of Bio	informatics - Dan E. Krane, Michael L. Raymer, Pearson education.							
2. Seque	ence structure and Datab	ase – Des Higgins, Willice Taylor, oxford press							
3. Bioin	formatics: A Practical G	uide to the Analysis of Genes and Proteins, by Andreas D. Baxevanis, B. F. Francis Ouellette, Wi	iley-Intersci	ence,					
4. Seque	ence and Genome Analy	sis by David W. Mount - Cold Spring Harbor Laboratory							
5. Bioin	formatics and Functiona	l Genomics; by Jonathan Pevsner; Wiley-Liss							
6. Introd	luction to Bioinformatic	s; Arthur M. Lesk; Oxford University Press							
e-Lea	rning Source:								
https://w	ww.vlab.co.in/broad-ar	ea-biotechnology-and-biomedical-engineering							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CO1	0	0	0	3	3	0	0	3	3	3	0	3	3	2	2
CO2	0	0	0	3	3	0	0	3	3	3	0	3	3	3	1
CO3	0	0	0	0	3	0	0	0	3	3	0	3	3	2	1
CO4	0	0	0	3	3	0	0	0	3	0	0	3	3	2	2
CO5	0	0	0	3	3	0	0	3	3	3	0	3	2	2	2

Name & Sign of Program Coordinator	Sign & Seal of HoD